Problem 1.

(1) What is the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} ?
(2) What is the splitting field of the polynomial from part (1)?

Problem 2. Give examples of:
(a) An irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree 5 .
(b) A field extension of \mathbb{F}_{5} of degree 3.
(c) A Galois field extension L / K such that $\operatorname{Gal}(L / K)=\mathbb{Z} / 7$.
(d) A field extension of degree 3 that is not Galois.

Problem 3.

(a) State the definition of a solvable group.
(b) Show that the Dihedral group on 8 elements

$$
G=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=\mathrm{id}, \tau \sigma=\sigma^{3} \tau\right\rangle
$$

is solvable.
Problem 4. Find the Galois groups of the splitting fields of the following polynomials over \mathbb{Q}.
(a) $x^{4}-2$
(b) $x^{3}+5 x+5$
(c) $x^{4}+3 x+3$

Hint: You may want to use the following formulae:

- the discriminant of $f(x)=x^{3}+a x+b$ is $-4 a^{3}-27 b^{2}$.
- the discriminant of $f(x)=x^{4}+a x+b$ is $-27 a^{4}+256 b^{3}$
- the resolvent cubic of $f(x)=x^{4}+a x+b$ is $x^{3}-4 b x-a^{2}$.

Problem 5.

(a) Express $\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}$ as a polynomial in the elementary symmetric functions s_{1}, s_{2}, s_{3} where

$$
\begin{aligned}
& s_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3} \\
& s_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3} \\
& s_{3}=\alpha_{1} \alpha_{2} \alpha_{3}
\end{aligned}
$$

(b) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of $f(x)=x^{3}-x^{2}+2 x-3$. What is $\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}$?

Problem 6.

(a) Prove that any degree 2 field extension $K \subseteq L$ is normal.
(b) Prove that if $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial with roots $\alpha, \beta \in \mathbb{C}$, then the fields $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$ are isomorphic.

